Randomized SAT algorithms

Martin Babka

March 16, 2011

(ロ)、(型)、(E)、(E)、 E) の(の)

History

Randomized algorithms

- Paturi, Pudlák, Saks and Zanez (PPSZ) algorithm solves unique 3-SAT in O(1.3071ⁿ) time.
- Schöning proposed O(poly(n)(4/3)ⁿ) algorithm for any satisfiable 3-SAT formula.
- Iwama and Tamaki improved it to \$\mathcal{O}\$(1.3238ⁿ)\$. Refined analysis of PPSZ improved the bound to \$\mathcal{O}\$(1.32266ⁿ)\$.
- The best known result, $\mathcal{O}(1.32216^n)$, is by Rolf from 2006.

Deterministic algorithms

- PPSZ has already been derandomized.
- In 2010 Moser and Scheder showed a full derandomization of Schöning's k-SAT Algorithm.

Probability basics

Markov inequality

Let X be a non-negative random variable and k > 0. Then

$$\Pr\left(X \ge k \mathbf{E}[X]\right) \le \frac{1}{k}.$$

Geometric distribution $X \approx \text{Ge}(p)$ if $\Pr(X = k) = (1 - p)^{k-1}p$. Hence $\mathbb{E}[X] = \frac{1}{p}$.

Random walk

• We are given a digraph with the set of nodes being equal to all possible assignments of variables.

- Edges are determined by the algorithms.
- We calculate the probability of reaching a satisfiable assignment from a random one.

2-SAT, a simple example $_{\text{Algorithm}}$

Let $c \in \mathbb{N}$ be an arbitrary constant and n be the number of variables of the given formula.

Algorithm

- Repeat up to *c* times.
 - Start with an arbitrary assignment.
 - Repeat up to $2n^2$ times:
 - Choose an arbitrary clause C that is not satisfied.
 - Choose uniformly at random one of the literals in *C* and switch the value of its variable.
 - If a valid truth assignment has been found, return **YES**.

• Return NO.

If the formula is satisfiable, then $\Pr(\text{YES}) \ge 1 - 2^{-c}$.

2-SAT, a simple example

Analysis of random walk

Fix a satisfiable solution S.

- State *j* represents the assignments having Hamming distance *j* from *S*, they differ in *j* variables when compared to *S*.
- Random walk around states 0, ..., n.
- The value *h_j* denotes the expected number of steps to reach 0 when in *j*.

For our random walk we have that

•
$$h_0 = 0$$

•
$$h_n = 1 + h_{n-1}$$
,

• $h_j = 1 + \frac{1}{2}h_{j+1} + \frac{1}{2}h_{j-1}$ hence $h_{j+1} = 2h_j - h_{j-1} - 2$.

Solution of the system of linear equations is $h_j = 2nj - j^2 \le n^2$.

2-SAT, a simple example Analysis

What is the probability of finding a solution in $\mathcal{O}(n^2)$ steps?

- We start in a state *j*, it is chosen at random.
- The expected number of steps to find S is at most n^2 .
- We repeat the iteration $2n^2$ steps.
- By Markov inequality \mathbf{Pr} (not finding S) $\leq \frac{1}{2}$.
- Because of c independent restarts the overall probability of not finding a satisfying solution is at most 2^{-c}.

We have a randomized polynomial algorithm for 2-SAT with a negligible error. The situation changes dramatically for k-SAT, k > 2, why?

3-SAT

The same algorithm

What is the expected number of steps to reach the state 0?

- $h_0 = 0$.
- $h_j = 1 + \frac{1}{3}h_{j-1} + \frac{2}{3}h_{j+1}$ hence $h_{j+1} = \frac{3}{2}h_j \frac{1}{2}h_{j-1} \frac{3}{2}$.
- $h_n = 1 + h_{n-1}$.

The unique solution is $h_j = 2^{n+2} - 2^{n-j+2} - 3j$.

- We are likely to run towards the state *n* than to the state 0.
- The expected number of steps is exponential and so is the expected running time of the algorithm.
- The complexity for the error probability 2^{-c} is $\mathcal{O}(c \operatorname{poly}(n)2^n)$.

• We want a lower base.

k-SAT Idea

Notation

- We assume that we have a formula with *n* variables.
- Let *t* be a parameter the number of restarts.

Idea

- It is likely to run towards the state *n* during a random walk.
- Make the random walks shorter.
- Repeat random walks, do restarts, (exponentially) many times.
- The probability that the algorithm never finishes in the state 0 is exponentially low with respect to the number of restarts, *t*.

k-SAT

An improved algorithm

Algorithm

- Repeat up to *t* times.
 - Start with an arbitrary assignment.
 - If a valid truth assignment has been found, return **YES**.
 - Repeat up to 3*n* times:
 - Choose an arbitrary clause *C* that is not satisfied.
 - Choose uniformly at random one of the literals in *C* and switch the value of its variable.
 - If a valid truth assignment has been found, return **YES**.

- Return NO.
- We need to find a suitable t.
- The c loop from 2-SAT may be simulated by ct restarts.

k-SAT Analysis

- Fix a satisfying solution S.
- States are the same as in case of 2-SAT; *j* denotes the number of variables having different values in *S*.
- Let q_j be the probability of reaching the state 0 when starting in the state j.

Estimating q_j

• Moreover we allow *i* steps backwards (towards *n*). Now we need *j* + *i* step towards 0.

• Exact analysis using Catalan numbers. Simpler analysis permits "negative" states.

k-SAT Analysis

Estimating q_j

- $q_j \geq \max_{i \in \{0,...,j\}} {j+2i \choose i} \left(\frac{1}{k}\right)^{j+i} \left(\frac{k-1}{k}\right)^i.$
- The value $\binom{j+2i}{i}$ equals the number of paths going j + i steps towards 0 and i steps towards n.
- The above estimate is valid because we use maximum.
- Because $j \leq i$ we do not consider more than 3n steps.
- Choose $i \approx \frac{j}{k-2}$ and then $q_j \ge \Omega\left(j^{-2} \cdot \left(\frac{1}{k-1}\right)^j\right)$.
- For k = 3 using Stirling approximation it may be shown that $q_j = \Omega\left(\frac{1}{\sqrt{j}} \cdot 2^{-j}\right).$

k-SAT Analysis

• Let *p* be the probability of reaching 0 in one restart.

$$p = \sum_{j=0}^{n} \mathbf{Pr} (\text{starting in } j) \cdot q_j.$$

• **Pr** (starting in
$$j$$
) = $\binom{n}{j} \left(\frac{1}{2}\right)^n$.

- Thus $p = 2^{-n} \cdot \Omega\left(n^{-2}\right) \cdot \left(1 + \frac{1}{k-1}\right)^n$.
- In one restart we find a solution with probability at least p.
- From the expected value of geometric distribution we need at least t = ²/_p restarts to find it with the probability at least 0.5.
- Another c repetitions lower the error rate to 2^{-c} .

k-SAT

Result for k-SAT

- We need $\mathcal{O}\left(n^2\left(1-\frac{1}{k}
 ight)^n
 ight)$ restarts for a constant error.
- For large values of k, $k = \Omega(n)$, we are not far from 2^n .

Result for 3-SAT

- We need $\mathcal{O}\left(\sqrt{n}\left(\frac{4}{3}\right)^n\right)$ restarts to have a constant error.
- The overall complexity of the algorithm is $\mathcal{O}\left(\operatorname{poly}(n)\left(\frac{4}{3}\right)^n\right)$.

Other applications

- The same approach also works in CSP.
- The best algorithm is a simple combination of PPSZ and Schöning's algorithms. Analysis is far more complicated.

Literature

- Schöning, U.: A Probabilistic Algorithm for *k*-SAT and Constraint Satisfaction Problems, 1999
- Rolf, D.: Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT, 2006
- Moser, A., R., Scheder, D.: A Full Derandomization of Schöning's *k*-SAT Algorithm, 2010
- Rolf Wanka's presentation
- Luca Trevisan lecture notes on Randomized Algorithms