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History

Randomized algorithms

• Paturi, Pudlák, Saks and Zanez (PPSZ) algorithm solves
unique 3-SAT in O(1.3071n) time.

• Schöning proposed O(poly(n)(4/3)n) algorithm for any
satisfiable 3-SAT formula.

• Iwama and Tamaki improved it to O(1.3238n). Refined
analysis of PPSZ improved the bound to O(1.32266n).

• The best known result, O(1.32216n), is by Rolf from 2006.

Deterministic algorithms

• PPSZ has already been derandomized.

• In 2010 Moser and Scheder showed a full derandomization of
Schöning’s k-SAT Algorithm.



Probability basics

Markov inequality

Let X be a non-negative random variable and k > 0. Then

Pr (X ≥ kE [X ]) ≤ 1

k
.

Geometric distribution
X ≈ Ge(p) if Pr (X = k) = (1− p)k−1p. Hence E [X ] = 1

p .

Random walk

• We are given a digraph with the set of nodes being equal to
all possible assignments of variables.

• Edges are determined by the algorithms.

• We calculate the probability of reaching a satisfiable
assignment from a random one.



2-SAT, a simple example
Algorithm

Let c ∈ N be an arbitrary constant and n be the number of
variables of the given formula.

Algorithm

• Repeat up to c times.
• Start with an arbitrary assignment.
• Repeat up to 2n2 times:

• Choose an arbitrary clause C that is not satisfied.
• Choose uniformly at random one of the literals in C and

switch the value of its variable.
• If a valid truth assignment has been found, return YES.

• Return NO.

If the formula is satisfiable, then Pr (YES) ≥ 1− 2−c .



2-SAT, a simple example
Analysis of random walk

Fix a satisfiable solution S .

• State j represents the assignments having Hamming distance j
from S , they differ in j variables when compared to S .

• Random walk around states 0, . . . , n.

• The value hj denotes the expected number of steps to reach 0
when in j .

For our random walk we have that

• h0 = 0,

• hn = 1 + hn−1,

• hj = 1 + 1
2hj+1 + 1

2hj−1 hence hj+1 = 2hj − hj−1 − 2.

Solution of the system of linear equations is hj = 2nj − j2 ≤ n2.



2-SAT, a simple example
Analysis

What is the probability of finding a solution in O
(
n2
)

steps?

• We start in a state j , it is chosen at random.

• The expected number of steps to find S is at most n2 .

• We repeat the iteration 2n2 steps.

• By Markov inequality Pr (not finding S) ≤ 1
2 .

• Because of c independent restarts the overall probability of
not finding a satisfying solution is at most 2−c .

We have a randomized polynomial algorithm for 2-SAT with a
negligible error. The situation changes dramatically for k-SAT,
k > 2, why?



3-SAT
The same algorithm

What is the expected number of steps to reach the state 0?

• h0 = 0.

• hj = 1 + 1
3hj−1 + 2

3hj+1 hence hj+1 = 3
2hj − 1

2hj−1 − 3
2 .

• hn = 1 + hn−1.

The unique solution is hj = 2n+2 − 2n−j+2 − 3j .

• We are likely to run towards the state n than to the state 0.

• The expected number of steps is exponential and so is the
expected running time of the algorithm.

• The complexity for the error probability 2−c is O(c poly(n)2n).

• We want a lower base.



k-SAT
Idea

Notation

• We assume that we have a formula with n variables.

• Let t be a parameter – the number of restarts.

Idea

• It is likely to run towards the state n during a random walk.

• Make the random walks shorter.

• Repeat random walks, do restarts, (exponentially) many times.

• The probability that the algorithm never finishes in the state 0
is exponentially low with respect to the number of restarts, t.



k-SAT
An improved algorithm

Algorithm

• Repeat up to t times.
• Start with an arbitrary assignment.
• If a valid truth assignment has been found, return YES.
• Repeat up to 3n times:

• Choose an arbitrary clause C that is not satisfied.
• Choose uniformly at random one of the literals in C and

switch the value of its variable.
• If a valid truth assignment has been found, return YES.

• Return NO.

• We need to find a suitable t.

• The c loop from 2-SAT may be simulated by ct restarts.



k-SAT
Analysis

• Fix a satisfying solution S .

• States are the same as in case of 2-SAT; j denotes the
number of variables having different values in S .

• Let qj be the probability of reaching the state 0 when starting
in the state j .

Estimating qj

• Moreover we allow i steps backwards (towards n). Now we
need j + i step towards 0.

• Exact analysis using Catalan numbers. Simpler analysis
permits

”
negative“ states.



k-SAT
Analysis

Estimating qj

• qj ≥ maxi∈{0,...,j}
(j+2i

i

) (
1
k

)j+i (k−1
k

)i
.

• The value
(j+2i

i

)
equals the number of paths going j + i steps

towards 0 and i steps towards n.

• The above estimate is valid because we use maximum.

• Because j ≤ i we do not consider more than 3n steps.

• Choose i ≈ j
k−2 and then qj ≥ Ω

(
j−2 ·

(
1

k−1

)j
)

.

• For k = 3 using Stirling approximation it may be shown that

qj = Ω
(

1√
j
· 2−j

)
.



k-SAT
Analysis

• Let p be the probability of reaching 0 in one restart.

p =
n∑

j=0

Pr (starting in j) · qj .

• Pr (starting in j) =
(n

j

) (
1
2

)n
.

• Thus p = 2−n · Ω
(
n−2
)
·
(

1 + 1
k−1

)n
.

• In one restart we find a solution with probability at least p.

• From the expected value of geometric distribution we need at
least t = 2

p restarts to find it with the probability at least 0.5.

• Another c repetitions lower the error rate to 2−c .



k-SAT

Result for k-SAT

• We need O
(
n2
(
1− 1

k

)n)
restarts for a constant error.

• For large values of k , k = Ω(n), we are not far from 2n.

Result for 3-SAT

• We need O
(√

n
(

4
3

)n)
restarts to have a constant error.

• The overall complexity of the algorithm is O
(
poly(n)

(
4
3

)n)
.

Other applications

• The same approach also works in CSP.

• The best algorithm is a simple combination of PPSZ and
Schöning’s algorithms. Analysis is far more complicated.
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• Schöning, U.: A Probabilistic Algorithm for k-SAT and
Constraint Satisfaction Problems, 1999

• Rolf, D.: Improved Bound for the PPSZ/Schöning-Algorithm
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