# Randomized SAT algorithms 

Martin Babka

March 16, 2011

## History

## Randomized algorithms

- Paturi, Pudlák, Saks and Zanez (PPSZ) algorithm solves unique 3-SAT in $\mathcal{O}\left(1.3071^{n}\right)$ time.
- Schöning proposed $\mathcal{O}\left(\operatorname{poly}(n)(4 / 3)^{n}\right)$ algorithm for any satisfiable 3-SAT formula.
- Iwama and Tamaki improved it to $\mathcal{O}\left(1.3238^{n}\right)$. Refined analysis of PPSZ improved the bound to $\mathcal{O}\left(1.32266^{n}\right)$.
- The best known result, $\mathcal{O}\left(1.32216^{n}\right)$, is by Rolf from 2006.

Deterministic algorithms

- PPSZ has already been derandomized.
- In 2010 Moser and Scheder showed a full derandomization of Schöning's k-SAT Algorithm.


## Probability basics

Markov inequality
Let $X$ be a non-negative random variable and $k>0$. Then

$$
\operatorname{Pr}(X \geq k \mathbf{E}[X]) \leq \frac{1}{k}
$$

Geometric distribution
$X \approx \mathrm{Ge}(p)$ if $\operatorname{Pr}(X=k)=(1-p)^{k-1} p$. Hence $\mathbf{E}[X]=\frac{1}{p}$.
Random walk

- We are given a digraph with the set of nodes being equal to all possible assignments of variables.
- Edges are determined by the algorithms.
- We calculate the probability of reaching a satisfiable assignment from a random one.


## 2-SAT, a simple example

## Algorithm

Let $c \in \mathbb{N}$ be an arbitrary constant and $n$ be the number of variables of the given formula.

## Algorithm

- Repeat up to $c$ times.
- Start with an arbitrary assignment.
- Repeat up to $2 n^{2}$ times:
- Choose an arbitrary clause $C$ that is not satisfied.
- Choose uniformly at random one of the literals in $C$ and switch the value of its variable.
- If a valid truth assignment has been found, return YES.
- Return NO.

If the formula is satisfiable, then $\operatorname{Pr}(\mathbf{Y E S}) \geq 1-2^{-c}$.

## 2-SAT, a simple example

## Analysis of random walk

Fix a satisfiable solution $S$.

- State $j$ represents the assignments having Hamming distance $j$ from $S$, they differ in $j$ variables when compared to $S$.
- Random walk around states $0, \ldots, n$.
- The value $h_{j}$ denotes the expected number of steps to reach 0 when in $j$.

For our random walk we have that

- $h_{0}=0$,
- $h_{n}=1+h_{n-1}$,
- $h_{j}=1+\frac{1}{2} h_{j+1}+\frac{1}{2} h_{j-1}$ hence $h_{j+1}=2 h_{j}-h_{j-1}-2$.

Solution of the system of linear equations is $h_{j}=2 n j-j^{2} \leq n^{2}$.

## 2-SAT, a simple example

## Analysis

What is the probability of finding a solution in $\mathcal{O}\left(n^{2}\right)$ steps?

- We start in a state $j$, it is chosen at random.
- The expected number of steps to find $S$ is at most $n^{2}$.
- We repeat the iteration $2 n^{2}$ steps.
- By Markov inequality $\operatorname{Pr}($ not finding $S) \leq \frac{1}{2}$.
- Because of $c$ independent restarts the overall probability of not finding a satisfying solution is at most $2^{-c}$.
We have a randomized polynomial algorithm for 2-SAT with a negligible error. The situation changes dramatically for $k$-SAT, $k>2$, why?


## 3-SAT

## The same algorithm

What is the expected number of steps to reach the state 0 ?

- $h_{0}=0$.
- $h_{j}=1+\frac{1}{3} h_{j-1}+\frac{2}{3} h_{j+1}$ hence $h_{j+1}=\frac{3}{2} h_{j}-\frac{1}{2} h_{j-1}-\frac{3}{2}$.
- $h_{n}=1+h_{n-1}$.

The unique solution is $h_{j}=2^{n+2}-2^{n-j+2}-3 j$.

- We are likely to run towards the state $n$ than to the state 0 .
- The expected number of steps is exponential and so is the expected running time of the algorithm.
- The complexity for the error probability $2^{-c}$ is $\mathcal{O}\left(c\right.$ poly $\left.(n) 2^{n}\right)$.
- We want a lower base.


## k-SAT <br> Idea

## Notation

- We assume that we have a formula with $n$ variables.
- Let $t$ be a parameter - the number of restarts.

Idea

- It is likely to run towards the state $n$ during a random walk.
- Make the random walks shorter.
- Repeat random walks, do restarts, (exponentially) many times.
- The probability that the algorithm never finishes in the state 0 is exponentially low with respect to the number of restarts, $t$.


## $k-S A T$

## An improved algorithm

## Algorithm

- Repeat up to $t$ times.
- Start with an arbitrary assignment.
- If a valid truth assignment has been found, return YES.
- Repeat up to $3 n$ times:
- Choose an arbitrary clause $C$ that is not satisfied.
- Choose uniformly at random one of the literals in $C$ and switch the value of its variable.
- If a valid truth assignment has been found, return YES.
- Return NO.
- We need to find a suitable $t$.
- The $c$ loop from 2-SAT may be simulated by $c t$ restarts.


## $k$-SAT

## Analysis

- Fix a satisfying solution $S$.
- States are the same as in case of 2-SAT; $j$ denotes the number of variables having different values in $S$.
- Let $q_{j}$ be the probability of reaching the state 0 when starting in the state $j$.


## Estimating $q_{j}$

- Moreover we allow $i$ steps backwards (towards n). Now we need $j+i$ step towards 0 .
- Exact analysis using Catalan numbers. Simpler analysis permits „negative" states.


## $k$-SAT

## Analysis

## Estimating $q_{j}$

- $q_{j} \geq \max _{i \in\{0, \ldots, j\}}\binom{j+2 i}{i}\left(\frac{1}{k}\right)^{j+i}\left(\frac{k-1}{k}\right)^{i}$.
- The value $\binom{j+2 i}{i}$ equals the number of paths going $j+i$ steps towards 0 and $i$ steps towards $n$.
- The above estimate is valid because we use maximum.
- Because $j \leq i$ we do not consider more than $3 n$ steps.
- Choose $i \approx \frac{j}{k-2}$ and then $q_{j} \geq \Omega\left(j^{-2} \cdot\left(\frac{1}{k-1}\right)^{j}\right)$.
- For $k=3$ using Stirling approximation it may be shown that $q_{j}=\Omega\left(\frac{1}{\sqrt{j}} \cdot 2^{-j}\right)$.


## $k$-SAT

## Analysis

- Let $p$ be the probability of reaching 0 in one restart.

$$
p=\sum_{j=0}^{n} \operatorname{Pr}(\text { starting in } j) \cdot q_{j}
$$

- $\operatorname{Pr}($ starting in $j)=\binom{n}{j}\left(\frac{1}{2}\right)^{n}$.
- Thus $p=2^{-n} \cdot \Omega\left(n^{-2}\right) \cdot\left(1+\frac{1}{k-1}\right)^{n}$.
- In one restart we find a solution with probability at least $p$.
- From the expected value of geometric distribution we need at least $t=\frac{2}{p}$ restarts to find it with the probability at least 0.5.
- Another $c$ repetitions lower the error rate to $2^{-c}$.


## k-SAT

## Result for $k$-SAT

- We need $\mathcal{O}\left(n^{2}\left(1-\frac{1}{k}\right)^{n}\right)$ restarts for a constant error.
- For large values of $k, k=\Omega(n)$, we are not far from $2^{n}$.

Result for 3-SAT

- We need $\mathcal{O}\left(\sqrt{n}\left(\frac{4}{3}\right)^{n}\right)$ restarts to have a constant error.
- The overall complexity of the algorithm is $\mathcal{O}\left(\operatorname{poly}(n)\left(\frac{4}{3}\right)^{n}\right)$.

Other applications

- The same approach also works in CSP.
- The best algorithm is a simple combination of PPSZ and Schöning's algorithms. Analysis is far more complicated.


## Literature

- Schöning, U.: A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems, 1999
- Rolf, D.: Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT, 2006
- Moser, A., R., Scheder, D.: A Full Derandomization of Schöning's k-SAT Algorithm, 2010
- Rolf Wanka's presentation
- Luca Trevisan lecture notes on Randomized Algorithms

