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• Constraint satisfaction problem over the universe of 
elements 𝔻 is a triple (X,C,D)
▫ X – finite set of variables

▫ C – finite set of constraints

▫ D – is a function D:X 𝒫(𝔻)

▫ each constraint cC is a construct
of the form <(x1

c, x2
c,…, xk(c)

c),Rc>

 k(c) is arity of the constraint

 xi
cX for I = 1,2,…,k(c) and RcD(x1

c)  D(x2
c)  …  D(xk(c)

c)

• The task is to find assignment of values to variables from 
their domains such that all the constraints are satisfied
▫ or decide that no such valuation exists

• Decision variant is an NP-complete problem

example:𝔻={1,2,3}

X={a,b,c}
C={<(a,b),”<“>;

<(b,c),”=“>}
D(a)=D(b)=D(c)=𝔻

example: a=1, b=2, c=2

Constraint Satisfaction Problem (CSP)
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• A Boolean formula is given - variables can take either the 
value TRUE or FALSE

• The task is to find valuation of variables such that the 
formula is satisfied
▫ or decide that no such valuation exists

• Conjunctive normal form (CNF) - standard form of the 
input formula
▫ variables: x1,x2,x3,...
▫ literals: x1,x1,x2,x2, ... variable or its negation
▫ clauses: (x1  x2  x3) ... disjunction of literals
▫ formula: (x1  x2) (x1  x2  x3) ... conjunction of clauses

• Clauses represent constraints that must be all satisfied (can be 
regarded as CSP) – SAT and CSP are mutually reducible

example: x = TRUE
y = FALSE

example: (x  y)  (x  y)

example:
p cnf 3 2
1 -2 0
1 2 -3 0
...

Boolean Satisfiability (SAT)
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• CSP paradigm provides many types of local 
consistencies
▫ local inference is typically too weak for SAT
▫ arc-consistency, path-consistency, i,j-consistency
 insignificant gain in comparison with unit-propagation
 expensive propagation with respect to the inference 

strength

• Global consistencies (global constraints)
▫ provide strong global inference
 often leads to significant simplification of the problem

▫ application of global consistencies in SAT is quite rare

• Consistency based on structural properties
▫ interpret SAT as a graph and find graph structures

Motivation for Global Consistencies
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• Difficult instances for today’s SAT (more
precisely for 2007’s) solving systems
▫ impossible to (heuristically) guess the solution
▫ heuristics do not succeed ►► search
▫ clause learning mechanism needs

to learn for a long time
• Typical example: unsatisfiable SAT instances encoding 

Dirichlet’s box principle (Pigeon-hole principle)
• Satisfiable case

▫ Valuation of variables = certificate
▫ small witness through which we can

verify satisfiability
• Unsatisfiable case

▫ no (small) witness (certificate)
to guess

▫ search/learning is necessary 

Pavel Surynek, 2011

Difficult Instances of SAT Today’s new 
variable ordering 
heuristics and 
preprocessing
techniques can 
succeed on these 
types of instances.
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• Input - Boolean formula in CNF
• Interpret as a graph of conflicts

▫ vertices = literals
▫ edges = conflicts between literals
▫ example: x and ¬x are in conflict (cannot be satisfied 

together) ►► put an edge between corresponding 
vertices

• Perform initial preprocessing
▫ Singleton unit propagation ►► new conflicts
▫ Consistency based on conflict graph

• Output - equivalent (simpler) formula or the answer 
“unsatisfiable“

Our Approach – conflict graphs
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• Make the graph of conflicts dense
▫ apply singleton unit propagation
▫ discover hidden conflicts between literals
▫ denser conflict graph = better for the subsequent step

• (Greedily) find cliques in the conflict graph
▫ at most one literal from a clique can be satisfied
▫ contribution of literal x...c(x) = number of clauses 

containing x
▫ contribution of clique C...c(C) = maxxC c(x)
▫ ∑Ccliquesc(C)<number of clauses (basic consistency check)

• All the cliques together do not contribute enough to 
satisfy the input formula ►► the input formula is 
unsatisfiable

Initial Preprocessing – improve the graph
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• Generalization of “∑Ccliquesc(C)<#clauses”

• Choose a sub-formula B = subset of clauses and 
project the contribution counting on sub-formula
▫ contribution of literal x to sub-formula B ...

...c(x,B) = number of clauses of B containing x

▫ contribution of clique C to sub-formula B ...
...c(C,B) = maxxC c(x,B)

▫ when ∑Ccliquesc(C,B)<number of clauses in B

►► B is unsatisfiable ⇒ input formula is unsatisfiable

• Singleton approach...literal x is inconsistent
▫ ∑Ccliques∌xc(C,B)<(#clauses of B)-c(x,B)

Clique Consistency – making projections

Pavel Surynek, 20118 | AI Seminar II 2011



• Inconsistency (basic case – singleton approach is not 
applied):
“∑Ccliquesc(C,B)<#clauses in B”
▫ example: clique C1={a,b,c}

clique C2={p,q,r}
 {a,b,c} are pair-wise conflicting

{p,q,r} are pair-wise conflicting

▫ sub-formula
B = (a v p) & (b v q) & (c v r)  
c(C1,B)=1; c(C2,B)=1

▫ ∑Ccliquesc(C,B) = 2; #clauses in B = 3

• The original formula has no satisfying valuation.

Clique Consistency (example)

Pavel Surynek, 2011
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Conflict graph
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• „Insert 7 pigeons into 6 holes“

Visualization (1)
using GraphExplorer software (Surynek, 2007-2010)
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• After inferring new conflicts – singleton UP

Pavel Surynek, 2011

Visualization (2)
using GraphExplorer software (Surynek, 2007-2010)
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• After enforcing clique consistency: UNSAT

Pavel Surynek, 2011

Visualization (3)
using GraphExplorer software (Surynek, 2007-2010)
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• Construction of graph of conflicts
▫ polynomial worst-case time

• Singleton unit propagation
▫ polynomial worst-case time
▫ however, may be too time consuming for large real-life 

problems
 efficient propagation scheme base on 2-literal watching must be 

used
• Clique consistency with respect to a single sub-formula

▫ polynomial
• Problem: clique consistency with respect to multiple sub-

formulae
▫ we cannot try all the sub-formulae
▫ intelligent selection of promising sub-formulae must be 

done

Complexity of Clique Consistency
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• Tested SAT solving systems
▫ MiniSAT

▫ zChaff

▫ HaifaSAT

▫ selection criterion: available source code

• Testing instances (by Fadi Aloul)
▫ Pigeon Hole Principle

▫ Urquhart (resists resolution method)

▫ Field Programmable Gate Array

winners in
SAT Competition 2005 and
SAT Race 2006

Competitive Comparison
carried out in 2007
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Instance
Decision

(seconds)

Speedup ratio 

w.r.t.

MiniSAT

Speedup ratio 

w.r.t

zChaff

Speedup ratio 

w.r.t

HaifaSAT

chnl10_11 0.43 79.76 17.53 > 1395.34

chnl10_12 0.60 169.68 8.51 > 1000.00

chnl10_13 0.78 256.79 14.70 > 769.23

chnl11_12 0.70 > 857.14 47.84 > 857.14

urq3_5 130.15 0.73 N/A N/A

urq4_5 > 600.00 N/A N/A N/A

urq5_5 > 600.00 N/A N/A N/A

urq6_5 > 600.00 N/A N/A N/A

hole9 0.08 45.5 18.25 5977.00

hole10 0.13 301.84 57.92 > 4615.38

hole11 0.20 > 3000.00 161.8 > 3000.00

hole12 0.30 > 2000.00 1240.6 > 2000.00

fpga10_11 0.46 97.32 27.34 > 1304.34

fpga10_12 0.64 186.34 52.84 > 937.50

fpga10_13 0.84 431.23 90.65 > 714.28

fpga10_15 1.39 > 431.65 197.72 > 431.65

Opteron 1600 MHz, Mandriva Linux 10.1

Experimental Evaluation
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• SAT as CSP: Literal encoding model (X,C,D)
▫ X ... variables ↔ clauses, C ... constraints ↔ values standing for 

complementary literals are forbidden, D ... variable domains ↔ 
literals

• Interpret path-consistency in the CSP model of SAT as a 
directed graph
▫ vertices ↔ values in domains, edges ↔ allowed pairs of values

example:
X=V(x1  x2),V(x1  x2), ...

example:
D(V(x1  x2))={x1, x2}

example:
V(x1  x2) = x1 and
V(x1  x2) = x1

is forbidden

Path-consistency in Literal Encoding (1)

Pavel Surynek, 2011
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• Let us have a sequence of variables (path)
▫ pair of values is path-consistent w.r.t. to the sequence if there is an 

oriented path connecting them in the graph interpretation going 
through the sequence and values itself are connected

• Ignores constraints between non-neighboring variables in the 
sequence of variables

Path-consistency in Literal Encoding (2)

Pavel Surynek, 2011

V(x1  x2)

x2

x1

x2

x2

x3

x3 x3

x1

x1

V

x2

x1

V

x2

x2

V

x3

x2

V

x3

x3

V

x1

x3

V

x1

   

V(x3  x1)V(x2  x3)V(x1  x2)

V(x2 x3) V(x3  x1)

x1

x2

x3

x1

17 | AI Seminar II 2011



• Deduce more information from constraints
▫ decompose values into disjoint sets (called layers ... L1, L2,..., LM)

▫ deduce more information from constraints - calculate maximum size of the 
intersection of the constructed path with individual layers – denoted as χ

• Stronger restriction on paths ► stronger propagation

Modified Path-Consistency for SAT

Pavel Surynek, 2011
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• Enforcing modified path-consistency is difficult (NP-complete)
▫ The decision problem is whether there exists a path respecting the 

maximum sizes of intersections with individual layers.
• Lemma: The decision variant of the problem belongs to the NP class.

▫ The path is of polynomial size with respect to the graph interpretation.
▫ It can be checked in polynomial time whether the path conforms to 

maximum size of intersections with individual layers.
• Lemma: The existence of a Hamiltonian path in a graph is reducible 

to the existence of a path conforming to the maximum sizes of 
intersections with layers.

(v1,v2)(v1,v1) (v1,vn)

(v2,v2)(v2,v1) (v2,vn)

(vn,v2)(vn,v1) (vn,vn)

...

...

...

...

...

(vi,vk)
(vj,vk+1){vi,vj}E

L1

L2

Ln

1 1 1

1 1 1

1 1 1

NP-completeness of the Modified Path 
Consistency

Pavel Surynek, 2011

• Main idea of the proof: G=(V,E), where 
V={v1,v2,...,vn}
(i) Construct an instance of modified 
path consistency in the form of a 
matrix

• (ii) Associate rows of the matrix with 
layers and set the maximum size of the 
intersection to 1
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• An intersection matrix is defined for each value in the graph 
interpretation of path-consistency – it is denoted as ψ(v)
▫ Let L1, L2, …, LM be a layer decomposition of the graph 

interpretation

▫ Let K be the number of variables involved in the path

▫ ► The intersection matrix is of type M  K

• Intersection matrix ψ(v) w.r.t. a pair of values v0 and vK

▫ ψ(v)i,j represents the number of paths starting in v0 and ending 
in v that partially conform to maximum sizes of intersection with 
layers such that they intersect with Li j-times.

• It is not possible to enforce exact conformity to 
calculated maximum sizes of intersection with layers
▫ Therefore we need to talk about partial conformity.

Intersection Matrices
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• Intersection matrix can be updated easily
▫ ψ(v) is calculated from ψ(u1), ψ(u2),…, ψ(um) where u1, 

u2,…, um are a values from the domain of the previous
variable in the path

• If it is detected that no of the paths starting in v0 and 
ending in v conforms to the maximum size of the 
intersection with the layer Li such that vLi then ψ(v) is 
set to 0 (matrix)
▫ maximum intersection sizes with other layers cannot be 

violated since intersection size with them does no change

▫ relaxation: paths that do not conform to maximum sizes of 
intersections with layers are propagated further

Intersection Matrices Update
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Visualization of Layers
using GraphExplorer software (Surynek, 2007-2010)

Pavel Surynek, 2011

• Layer decomposition was constructed with several most 
constrained clauses (now: edges = forbidden pairs)
▫ several benchmark problems from the SAT Library

hanoi4.cnf

jnh1.cnf

s3-3-3-8.cnf
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SAT instance
Maximum intersection with L1=[v0, v1, v2, v3, v4, v5, v6, v7]

Χ(v0) Χ(v1) Χ(v2) Χ(v3) Χ(v4) Χ(v5) Χ(v6) Χ(v7)

ais12.cnf 1 1 1 1 1 1 1 1

hanoi4.cnf 1 2 2 3 3 3 4 4

huge.cnf 1 1 2 2 2 2 3 3

jnh1.cnf 1 2 2 3 4 4 4 5

par16-1.cnf 1 1 1 2 2 2 2 2

par16-1-c.cnf 1 2 2 3 3 4 4 5

pret150_75.cnf 1 1 2 2 3 3 4 4

s3-3-3-8.cnf 1 1 2 3 3 4 4 5

ssa7552-160.cnf 1 1 2 3 4 4 5 6

sw100-5.cnf 1 1 2 2 2 2 3 3

Urq8_5.cnf 1 1 2 2 3 3 4 4

uuf250-0100.cnf 1 1 2 2 3 3 4 4

Pavel Surynek, 2011

Maximum Intersection Sizes

• Maximum intersection size is calculated using the maximum 
intersection size for the previous value in the layer
▫ it is checked whether the intersection size can be increased by adding 

the current value
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• Comparison of the 
number of filtered pairs 
of values
▫ several benchmark problems 

from the SAT Library

▫ comparison of PC and
modified PC enforced by the 
basic variant of intersection 
matrix update algorithm

▫ on some problems modified 
PC is significantly stronger

▫ runtime was slightly higher for 
modified PC

SAT

Problem

Number of 

variables

Number of 

clauses

Pairs filtered 

by standard PC

Pairs filtered by 

modified PC

bw_large.a 495 4675 22 22

hanoi4 718 4934 9 10

huge 459 7054 12 12

jnh2 100 850 135 147

logistics.a 828 6718 192 192

medium 116 953 177 227

par8-1-c 64 254 0 19

par8-2-c 68 270 0 9

par8-3-c 75 298 0 100

par16-1-c 317 1264 0 11

par16-2-c 349 1392 0 7

par16-3-c 334 1332 0 7

ssa0432/003 435 1027 81 1598

ssa2670/130 1359 3321 4 2656

ssa2670/141 986 2315 20 8871

ssa7552/038 1501 3575 16 5652

ssa7552/158 1363 3034 49 2371

Pavel Surynek, 2011

Experimental Evaluation (1)
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• Improvement ratio
gained by 
preprocessing of SAT 
problems by modified 
PC in comparison with 
PC
▫ the number of decision 

steps was measured

▫ some problems were 
successfully preprocessed 
by modified PC

Problem #variables #clauses HaifaSat Minisat2 Rsat_1_03 zChaff

bw_large.a 459 4675 1.0 1.0 1.0 1.0

hanoi4 718 4934 1.0 1.0 1.0 1.0

hanoi5 1931 14468 1.0 1.0 1.0 1.0

huge 459 7054 1.0 1.0 1.0 1.0

jnh2 100 850 1.0 1.0 1.0 1.3

logistics.a 828 6718 1.0 1.0 1.0 1.0

medium 116 953 1.0 1.0 0.8 0.9

par8-1-c 64 254 1.0 1.0 0.9 0.7

par8-2-c 68 270 0.9 1.2 0.7 0.8

par8-3-c 75 298 0.8 1.4 0.6 0.8

par16-1-c 317 1264 0.1 0.4 2.2 0.1

par16-2-c 349 1392 1.1 2.3 0.8 0.8

par16-3-c 334 1332 0.8 1.4 6.6 1.6

ssa0432-003 435 1027 1.0 228.0 155.0 122.0

ssa2670-130 1359 3321 51.0 411.0 371.0 323.0

ssa2670-141 986 2315 289.0 429.0 455.0 489.0

ssa7552-038 1501 3575 190.0 226.0 173.0 238.0

ssa7552-158 1363 3034 114.0 129.0 151.0 312.0

Experimental Evaluation (2)
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